342

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Huang, X. Z., Zeng, X. F., Li, J. R., & Zhao, D. G., (2017). Construction and analysis of tify1a

and tify1b mutants in rice (Oryza sativa) based on CRISPR/Cas9 technology. J. Agric.

Biotechnol., 25, 1003–1012. 10.3969/j.issn.1674-7968.2017.06.015.

Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A., (1987). Nucleotide

sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in

Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169,

5429–5433.

Jia, H., Orbovic, V., Jones, J. B., & Wang, N., (2016). Modification of the PthA4 effector

binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic

Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol. J., 14,

1291–1301.

Jia, H., Zhang, Y., Orbovic, V., Xu, J., White, F. F., Jones, J. B., & Wang, N., (2017). Genome

editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus

canker. Plant Biotechnol. J., 15, 817–823.

Jiang, F., & Doudna, J. A., (2017). CRISPR-Cas9 structures and mechanisms. Annual Review

of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822.

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P., (2013). Demonstration

of CRISPR/Cas9/sgRNA mediated targeted gene modification in Arabidopsis, tobacco,

sorghum and rice. Nucleic Acids Research, 41, e188. doi: 10.1093/nar/gkt780.

Kelliher, T., Starr, D., Su, X., Tang, G., Chen, Z., Carter, J., et al., (2019). One step genome

editing of elite crop germplasm during haploid induction. Nat. Biotechnol., 37, 287–292.

https://doi.org/10.1038/ s4158 7-019-0038-x.

Knox, A. K., Dhillon, T., Cheng, H., Tondelli, A., Pecchioni, N., & Stockinger, E. J., (2010).

CBF gene copy number variation at frost resistance-2 is associated with levels of freezing

tolerance in temperate-climate cereals. Theoretical and Applied Genetics, 121(1), 21–35.

doi: 10.1007/s00122-010-1288-7.

Koonin, E. V., & Makarova, K. S., (2009). CRISPR-Cas: An Adaptive Immunity System in

Prokaryotes. F1000 biology reports 1.

Koonin, E. V., Makarova, K. S., & Zhang, F., (2017). Diversity, classification and evolution

of CRISPR-Cas systems. Curr. Opin. Microbiol., 37, 67–78.

Leenay, R. T., & Beisel, C. L., (2017). Deciphering, communicating, and engineering the

CRISPR PAM. J. Mol. Biol., 429(2), 177–191. doi: 10.1016/j.jmb.2016.11.024.

Li, C. H., Wang, G., Zhao, J. L., Zhang, L. Q., Ai, L. F., Han, Y. F., et al., (2014). The receptor-

like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene

homeostasis in rice. The Plant Cell, 26(6), 2538–2553. doi: 10.1105/tpc.114.125187.

Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., &

Sheen, J., (2013). Multiplex and homologous recombination-mediated genome editing in

Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology,

31, 688–691. doi: 10.1038/nbt.2654.

Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., et al., (2016). Gene replacements and

insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants, 2, 16139.

Li, L., Wei, K., Zheng, G., Liu, X., Chen, S., Jiang, W., & Lu, Y., (2018). CRISPRCpf1­

assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl.

Environ. Microbiol., 84, e00827–e918. https://doi.org/10.1128/AEM.00827 -18.

Li, R., Liu, C., Zhao, R., Wang, L., Chen, L., Yu, W., Zhang, S., et al., (2019). CRISPR/Cas9­

mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol.,

19, 38. https:// doi.org/10.1186/s1287 0-018-1627-4.